Absorbing boundary conditions for the wave equation and parallel computing

نویسندگان

  • Martin J. Gander
  • Laurence Halpern
چکیده

Absorbing boundary conditions have been developed for various types of problems to truncate infinite domains in order to perform computations. But absorbing boundary conditions have a second, recent and important application: parallel computing. We show that absorbing boundary conditions are essential for a good performance of the Schwarz waveform relaxation algorithm applied to the wave equation. In turn this application gives the idea of introducing a layer close to the truncation boundary which leads to a new way of optimizing absorbing boundary conditions for truncating domains. We optimize the conditions in the case of straight boundaries and illustrate our analysis with numerical experiments both for truncating domains and the Schwarz waveform relaxation algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absorbing Boundary Conditions for the Schrödinger Equation

A large number of differential equation problems which admit traveling waves are usually defined on very large or infinite domains. To numerically solve these problems on smaller subdomains of the original domain, artificial boundary conditions must be defined for these subdomains. One type of artificial boundary condition which can minimize the size of such subdomains is the absorbing boundary...

متن کامل

Absorbing Boundary Conditions for the Discretization Schemes of the One-Dimensional Wave Equation

When computing a partial differential equation, it is often necessary to introduce artificial boundaries. Here we explain a systematic method to obtain boundary conditions for the wave equation in one dimension, fitting to the discretization scheme and stable. Moreover, we give error estimates on the reflected part.

متن کامل

Application of Boundary Element Method to 3 D Submerged Structures With Open Ends (RESEARCH NOTE)

This paper presents a three dimensional application of direct Boundary-Element Method (BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure near the floor with finite depth. The wave diffraction problem is formulated within the framework of linearized potential theory and solved numerically with direct BEM. A computer program based on BEM is developed ...

متن کامل

Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation

We consider the problem of constructing absorbing boundary conditions for the multi-dimensional wave equation. Here we work directly with a difference approximation to the equation, rather than first finding analytical boundary conditions and then discretizing the analytical conditions. This approach yields some simple and effective discrete conditions. These discrete conditions are consistent ...

متن کامل

Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions

A one-way wave equation is a partial differential equation which, in some approximate sense, behaves like the wave equation in one direction but permits no propagation in the opposite one. Such equations are used in geophysics, in underwater acoustics, and as numerical "absorbing boundary conditions". Their construction can be reduced to the approximation of vl s2 on [-1,1] by a rational functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2005